Modeling accuracy as a function of response time with the generalized linear mixed effects model.

نویسندگان

  • D J Davidson
  • A E Martin
چکیده

In psycholinguistic studies using error rates as a response measure, response times (RT) are most often analyzed independently of the error rate, although it is widely recognized that they are related. In this paper we present a mixed effects logistic regression model for the error rate that uses RT as a trial-level fixed- and random-effect regression input. Production data from a translation-recall experiment are analyzed as an example. Several model comparisons reveal that RT improves the fit of the regression model for the error rate. Two simulation studies then show how the mixed effects regression model can identify individual participants for whom (a) faster responses are more accurate, (b) faster responses are less accurate, or (c) there is no relation between speed and accuracy. These results show that this type of model can serve as a useful adjunct to traditional techniques, allowing psycholinguistic researchers to examine more closely the relationship between RT and accuracy in individual subjects and better account for the variability which may be present, as well as a preliminary step to more advanced RT-accuracy modeling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling the potential habitat of Ferula ovina (Boiss) using Generalized Linear Model in Semi-Steppe rangelands of Western Isfahan

This study was aimed to predict the potential distribution of Ferula ovina (Boiss) in Feridoonshar, in the western part of Isfahan province, and to produce species response curves in relation to the environmental variables using the Generalized Linear Model (GLM). The presence and absence of the species in 278 sites (including 138 presence sites & 140 absence sites) were collected using random ...

متن کامل

A New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models

Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...

متن کامل

Phase II monitoring of auto-correlated linear profiles using linear mixed model

In many circumstances, the quality of a process or product is best characterized by a given mathematical function between a response variable and one or more explanatory variables that is typically referred to as profile. There are some investigations to monitor auto-correlated linear and nonlinear profiles in recent years. In the present paper, we use the linear mixed models to account autocor...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta psychologica

دوره 144 1  شماره 

صفحات  -

تاریخ انتشار 2013